The CSRP2BP histone acetyltransferase drives smooth muscle gene expression

نویسندگان

  • Yanlin Ma
  • Qi Li
  • Ankang Li
  • Yunjian Wei
  • Ping Long
  • Xinxing Jiang
  • Fei Sun
  • Ralf Weiskirchen
  • Bangyong Wu
  • Chao Liang
  • Joachim Grötzinger
  • Yanxing Wei
  • Wei Yu
  • Mark Mercola
  • Yuanhua Huang
  • Jun Wang
  • Yanhong Yu
  • Robert J. Schwartz
چکیده

The expression of nearly all smooth muscle genes are controlled by serum response factor binding sites in their promoter regions. However, SRF alone is not sufficient for regulating smooth muscle cell development. It associates with other cardiovascular specific cofactors to regulate smooth muscle gene expression. Previously, we showed that the transcription co-factor CRP2 was a regulator of smooth muscle gene expression. Here, we report that CSRP2BP, a coactivator for CRP2, is a histone acetyltransferase and a driver of smooth muscle gene expression. CSRP2BP directly interacted with SRF, CRP2 and myocardin. CSRP2BP synergistically activated smooth muscle gene promoters in an SRF-dependent manner. A combination of SRF, GATA6 and CRP2 required CSRP2BP for robust smooth muscle gene promoter activity. Knock-down of Csrp2bp in smooth muscle cells resulted in reduced smooth muscle gene expression. We conclude that the CSRP2BP histone acetyltransferase is a coactivator for CRP2 that works synergistically with SRF and myocardin to regulate smooth muscle gene expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-209: Decreased Expression of Histone Acetyltransferase CDY1 Gene in Testis Tissue May Lead to Decreased Expression of Transition Protein (TNP) and Protamine (PRM) Genes,Causing Male Infertility

Background: Infertility is a complex medical problem. About 15% of couples are infertile, and male infertility being involved in roughly 50% of the cases. Among these, many cases are associated with a severe impairment of spermatogenesis. During the last stage of spermatogenesis (spermiogenesis), sperm chromatin endures complex modifications in which histones are lost and depositioned with tran...

متن کامل

Redox-Dependent Transcriptional Regulation Control of Cardiac Growth by Histone Acetylation/Deacetylation Excitation-Transcription Coupling in Vascular Smooth Muscle

Histones control gene expression by modulating the structure of chromatin and the accessibility of regulatory DNA sequences to transcriptional activators and repressors. Posttranslational modifications of histones have been proposed to establish a “code” that determines patterns of cellular gene expression. Acetylation of histones by histone acetyltransferases stimulates gene expression by rela...

متن کامل

Histone acetylation and recruitment of serum responsive factor and CREB-binding protein onto SM22 promoter during SM22 gene expression.

Chromatin acetylation and deacetylation catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs) are closely related to eukaryotic gene transcription. Although the binding of serum response factor (SRF) to the CArG boxes in the promoter region is necessary for SM22 expression, it has never been examined whether the local chromatin modification is involved in SM22 gene reg...

متن کامل

Cooperation of SRC-1 and p300 with NF-kappaB and CREB in angiotensin II-induced IL-6 expression in vascular smooth muscle cells.

OBJECTIVE The purpose of this study was to evaluate the role of coactivator histone acetyltransferases (HATs) p300 and SRC-1 in angiotensin II (Ang II)-induced interleukin-6 (IL-6) gene expression in vascular smooth muscle cells (VSMCs). METHODS AND RESULTS Ang II increased IL-6 mRNA expression via NF-kappaB and CREB in an extracellular signal-regulated kinase (ERK)-dependent manner in rat VS...

متن کامل

Epigenetic control of microsomal prostaglandin E synthase-1 by HDAC-mediated recruitment of p300.

Nonsteroidal anti-inflammatory drugs are the most widely used medicine to treat pain and inflammation, and to inhibit platelet function. Understanding the expression regulation of enzymes of the prostanoid pathway is of great medical relevance. Histone acetylation crucially controls gene expression. We set out to identify the impact of histone deacetylases (HDACs) on the generation of prostanoi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017